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In terminal airspace, integrating arrivals, departures, and surface operations with com-
peting resources provides the potential of improving operational efficiency by removing
barriers between different operations. This work develops a centralized stochastic sched-
uler for operations in a terminal area including airborne and surface operations using a
non-dominated sorting genetic algorithm and Monte Carlo simulations. The scheduler
handles competing resources between different flows, such as runway allocations, runway
crossings, merges at departure fixes, and other interaction waypoints between arrivals and
departures. The scheduler takes time-varied uncertainties into account in optimization as
well. The scheduler is run sequentially to identify the best robust schedule for the next
planning window. Resulting schedules determine routes, speeds or delays, and runway
assignments subject to separation constraints at merging/diverging waypoints in the air
and at runways (including runway crossings) on the surface. The Los Angeles terminal
area was used as an example in experiments with a four-hour traffic scenario. The results
showed that using stochastic schedulers can reduce flight time delay (airborne and ground)
anywhere from 28% to 40% statistically compared to deterministic schedulers. Sensitivity
studies on various planning horizons presented that trade-offs exist between planning hori-
zons and achievable minimum delays. A twenty-minute planning horizon was found to be
a bad choice because uncertainties increased with the look-ahead time. Eight minutes was
promising for planning as it achieved the lowest delay compared to others. However, the
results demonstrated that any duration from two minutes to eight minutes could be a good
candidate as well. The results on runway usage showed that using the stochastic scheduler,
runway makespans and occupancy were usually slightly lower than applying deterministic
schedulers.

I. Introduction

In the National Airspace System (NAS) terminal areas, thousands of flights have to depart, arrive, or
taxi within short periods of time in the crowded airspace/surface areas every day. High-density operations
impose complexity and inefficiency on terminal airspace operations, and form choke points in the system.
The situation gets severe at major airports or metroplexes. Improving the operational efficiency in terminal
areas is critical for an efficient air traffic system.

In the past decade, research has been conducted from different perspectives to improve the efficiency of
operations in terminal areas. There have been many studies on arrival scheduling, departure scheduling,
and surface scheduling.!™” This research focused on aircraft sequencing problems and used airborne speed
or ground push-back time control. Representative tools that were developed by NASA are: the Traffic
Management Advisor (TMA)®? for arrival flight scheduling by adjusting speeds; and the Spot and Runway
Departure Advisor (SARDA)!? for surface operations scheduling by runway sequencing and push-back time
control. These scheduling algorithms and tools were developed in a segregated fashion. For instance, TMA
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treats departure slots on runways as constraints when scheduling arrivals, whereas SARDA takes arrival
times as hard constraints when sequencing departures. In these circumstances, runways are the competing
resources for both departures and arrivals. In addition to runways, waypoints and route segments may
also be shared between arrival and departure flows in terminal areas. Inefficient operations often emerge
because of the constraints of shared resources. Recently, integrated schedulers'' '# were proposed to apply
speed controls and route options to optimize the schedules for both arrivals and departures with competing
resources. Studies based on problems in San Jose,'' 2 Los Angles'® , and New York'# showed promise for
improving operation efficiency in the presence of competing resources. On the other hand, benefits from
optimal schedules calculated under deterministic scenarios are usually sensitive to uncertainties/errors of
estimated arrival/departure times. A study conducted for a virtual single runway sequence optimization
in the presence of uncertainties used a two-stage Mixed-Integer Linear Programming (MILP) formulation
and Sample Average Approximation (SAA) by adjusting airspeed and push-back time.'® For scheduling
integrated operations using both route and speed controls, a stochastic scheduler based on Non-dominated
Sorting Genetic Algorithm (NSGA) and Monte Carlo simulations was proposed to identify optimal and
robust schedules.'® " The optimization algorithm in the scheduler takes uncertainty into account by calcu-
lating costs stochastically over thousands of possible estimated arrival/departure times that follow gaussian
distributions. Another stochastic scheduler'® that combines job-shop scheduling method and SAA was also
proposed for solving integrated scheduling problems.

The scope of the aforementioned integrated schedulers, however, was small and only limited interac-
tion points between certain departure and arrival flows were studied. A more integrated scheduler that
coordinates arrivals, departures, and surface operations is necessary to provide more efficiency and/or even
consider user preference by removing barriers between different operations.!® This work develops a cen-
tralized stochastic scheduler for operations in a terminal area including airborne and surface operations on
the basis of previous works'®!7 using NSGA and Monte Carlo simulations. It advances the sequential and
stochastic scheduler developed previously and extends its application to arrivals, departures, and surface
operations in the entire terminal area. In addition to the inclusion of a subset of competing waypoints
between departures and arrivals, this work includes more competing resources between different flows, such
as runway allocations (between departure and arrivals), departure fixes (among departures), and runway
crossings (between departure and/or arrivals).

The Los Angeles (LAX) terminal area was used as an example and experiments were run with a four-
hour traffic scenario in LAX. The scheduler was run sequentially to identify the best robust schedule for
updated planning horizons. During the four-hour traffic scenario, schedules were updated periodically for
each planning horizon. Final schedule solutions included the routes, speed or delays, and runway assignments.
In the experiments, the standard deviation values of the departure time uncertainty were time-varied whereas
the uncertainty means (arrival and departure) and arrival standard deviations were constant. In this paper,
Section II describes the problem and its model. Section III presents the detailed methods proposed for this
study. Results are provided and the analysis is presented in Section IV. Conclusions are provided in Section

V.

II. Problem and Model

The interactions between Fillmore arrivals and Northbound departures in Los Angeles terminal airspace
(Figure 1) have been investigated in previous works!'® 1617 on scheduling with competing resources. This
work extends the scope to the entire LAX airspace by including all arrivals, departures and surface operations.
There are typically more than 1,200 flights taking off and landing in a day at LAX, the research goal of this
work is to develop an integrated and robust scheduler to statistically operate airborne and surface traffic
efficiently.

Figure 1 presents the abstract model of LAX terminal airspace and surface/runway layouts used in this
work. This layout models the West-flow configuration in LAX, which is reported to be the most common
configuration with about 86% of the usage at LAX.2? Arrival routes are in blue and departure routes are
in green. The main differences from actual routes are the short-cut routes added for Fillmore arrivals and
northbound departures to improve efficiency. Other than this, the model presented in Fig. 1 should be close
to the actual West-flow configuration in LAX. There are eight entry points for arrival flights represented by
incoming arrows to the green points. There are also four exit points for departures represented by outgoing
arrows. On the surface, four runways 24L, 24R, 25L, and 25R are open for both arrivals and departures.
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Figure 1. Los Angles Layout (not to scale)

The inner two runways 241 and 25R allow crossings from and to the outer runways through middle and end
points. In this model, airborne flights are required to maintain minimum separations at blue, green, and
red waypoints/fixes/nodes. Blue and green points are merging or diverging waypoints for traffic flows with
the same direction, and red points are crossing waypoints between arrivals and departures. Grey points are
either separated by altitudes or modeled as conflict-free points due to the immediate downstream constraints.
On the ground, separation is required at departure and arrival nodes and crossing points on runways.

ITI. Method

In this section, a method of developing a centralized scheduler for operations in a terminal area including
airborne and surface operations is discussed.

A. Objectives

The schedule optimization has multiple objectives with respect to total delay and pseudo controller inter-
vention count. For each flight, the delay is defined as the extra flight transit time between entrance and exit
points compared with shortest unimpeded transit time. The shortest unimpeded times assume flights take
shortest routes at highest feasible speeds as if there are no other aircraft. Pseudo controller intervention
count is the number of actions that need to be taken to avoid loss of separations due to prediction errors
of flight arrival or departure times. When a flight needs to be delayed due to a separation violation at any
merging and/or diverging waypoint including runways, a “controller action” is required to resolve the loss
of separation, thus the pseudo controller intervention count will be increased by one.

Ji=E[}; t:] = To
J2 = E[}; Nij

The overall objectives are then to minimize expected values of total delays and controller intervention

(1)
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counts, respectively. As shown in Eqn. 1, J; is the expected value of total delay over the random sampling
space caused by uncertainties or prediction errors. The total delay can be expressed as the difference between
the sum of flight transit times ¢; for all flights and the sum of these flights’ shortest unimpeded transit times
Ty. As the sum of unimpeded transit times is a constant, its expected value is represented by 7y in the
equation. Js is the expected value of the sum of controller intervention counts for all flights. Both costs are
evaluated over thousands sampling points using Monte Carlo simulations. Statistical measurements other
than expected values can also be applied in the future if necessary.

B. Decision variables

There are eight arrival flows with eight respective entry points as shown in the Fig. 1. There are three
departure flows corresponding to three directions: North, West, and South/East. Four types of decision
variables are defined for every flight: delay, speed, route and runway. Delay may be applied before entry
points. For a departure, the entry point is the gate on the surface, and for an arrival, it refers to the
arrival meter fix in the airspace. For each flight segment, the speed is discrete and its feasible range is
predefined based on preprocessed feasible speed calculated by the Trajectory Synthesizer (TS) tool used in
the Center TRACON Automation System (CTAS).2! Route options are designed for arrivals from Fillmore,
and Northbound departures where the departures and arrivals can take short cut if conflicts don’t happen
at shared waypoints between these two flows. Four runways 24L, 24R, 25L, and 25R are available options
to all flights, although factors like taxiing distance between runway and gate would affect such assignment.

C. Freeze horizon

The freeze horizon for arrivals is set at arrival meter fixes, which means that decision variables are frozen after
arrival flights proceed beyond their entry points. For departures, the freeze horizon is set at the departing
gates on the surface. A departure flight is kept at the gate until its decision variables including runway
assignment, takeoff slot, and departing route are all decided. Once a departure flight leaves its gate, these
assignments are then frozen. The freeze horizons are set up to avoid over-delay due to multiple rescheduling
events. For instance, when a departure flight A leaves its gate, its schedule is frozen. If later on, another
flight B is ready for scheduling and conflicts with A, then flight B has to yield to flight A in the updated
schedule. Otherwise, if flight B overtakes flight A, then flight A can get further delayed. This situation may
happen again if other flights cut in. Prior experiments showed that flight A can eventually get significant
delay if left unfrozen.

D. Constraints

As the aircraft speed options are preprocessed, infeasible speed options are ruled out. Separation require-
ments are the only constraints in the work. They were applied at fixes, waypoints, and runways, where flights
merged and/or diverged. According to FAA’s regulations based on wake vortex,?? minimum separation re-
quirements for airborne flights were listed in Table 1. The separation for departure and crossing flights at
the runway is given in Table 2 by converting original distance separation into time-based separation.??

Table 1. Minimum Airborne Aircraft Separations

Separation Distance | Leading Aircraft: Wake Category

(nmi) Heavy | B757 | Medium | Small
Trailing Heavy 4 4 3 3
Aircraft B757 4 4 3 3
Wake Medium 5 4 3 3
Category Small 6 5 3 3

In this optimization, the separation constraints are not treated as “hard constraints” or inequalities as in
usual linear or nonlinear optimization formulations. Because the same amount of separation violation results
in different delays in air traffic system, in this model, delay costs were calculated for resolving separation
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Table 2. Minimum Runway Separations for Departure and Crossing Flights

Separation Time Leading Aircraft Wake Category
(sec) Small | Large | Heavy | B757 | Crossing
Trailing Small 59 88 109 110 25
Aircraft Large 59 61 109 91 25
Wake Heavy 59 61 90 91 25
Category B757 59 61 109 91 25
Crossing 40 40 40 40 40
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Figure 2. Conflict-free scheduling using Constraint Algebra

violations. Given decision variables, a method based on constraint algebra?* was used to resolve aircraft
conflicts or constraint violations. With final resolutions from this method, arrival times at exit points were
then used to calculated delay costs. In the constraint algebra method, the flight priority is set up according
to runway unimpeded estimated times of arrival (ETAs) at the runway for both departures and arrivals.
The basic idea of this method is to insert one flight at a time starting from the first flight on the priority
list. The insertion should be guaranteed conflict-free at all points. The speed change is not considered in
the constraint algebra method, because it is already included in decision variables. If there is any conflict
between the inserting flight and existing flights, the new flight is given extra delay at its starting point.
For a departure flight, the delay is imposed at its gate as extra gate waiting time. Whereas, for an arrival
flight, the delay is propagated back upstream, beyond the arrival meter fix. Figure 2 presents an example of
inserting a flight using constraint algebra. Red bars represent the slots occupied by other aircraft. Given a
speed profile, the relative time differences between scheduling points are fixed for this flight. The constraint
algebra method calculates open slots at each scheduling point, and then finds the feasible starting time slots
with the “rigid” speed profile. In this figure, the feasible ranges for inserting the given speed profile are from
t1 to to and any time after t3. Therefore, the extra delay cost of inserting this flight is ¢; — ¢y, which would
be included in the final delay cost. As the speed is treated as a decision variable, the scheduler will calculate
the delay costs for a range of speed profile options in this way during optimization.
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E. Uncertainty models

In TMA and SARDA, schedules are updated frequently (every 10 seconds) to mitigate the impact of uncer-
tainties/prediction errors. When routes and/or runway assignments need to be decided in schedules for both
arrivals and departures, they have to be decided with a certain look-ahead time of at least several minutes.
For example, when a departure flight is about to taxi from its gate, pilots need to know the designated
runway. To determine the runway, uncertainties in other flights’ arrival or departure times have to be taken
into account because it would not be feasible to change its runway assignment in next update cycle even if
prediction errors are found later. In this circumstance, increasing update frequency is not effective for miti-
gating the impact of uncertainties. Taking uncertainties directly into account at planning stages is helpful.
Arrivals uncertainties must also be taken into account prior to a freeze horizon as runway/route is decided
ahead of time.

ETA, ETD,
Tu ETD,
= T
N TLZ N

Y
o = e S

—
>

Planning
P Time

Figure 3. Definition of the look-ahead time

o =041 xTy, Ty islook-ahead time
uw=0C, C =30.0

(2)

To simulate the real world, this study assumes that “planned times” to entry points are uncertain and
follow certain distributions. For a departure flight, the “planned time” is the planned push-back time from
its gate. And for an arrival flight, it refers to the estimated arrival time to the arrival meter fix. The ETA of
an arrival to entry points is assumed to follow a normal distribution with zero means and 30 second standard
deviation regardless of the planning look-ahead times based on trajectory prediction studies.?® Whereas for
a departure, it is defined that the estimated time of departure (ETD) from a gate, or the push-back time,
follows a normal distribution with a standard deviation linearly increased with the look-ahead time T}, where
the mean is still constant (see Eqn. 2). This definition and coefficients are set up based on study results from
the Surface Decision Support System (SDSS).25:27 The definition of the look-ahead time T}, is described in
Fig. 3, in which the ET'A;, ET Ay, and ET D; are ETAs and ETDs for sample flights with in a time window
span of T,,. The T}, of each flight is the time differences between its ETA/ETD and the planning time ¢,,.
According to the equation, when the planning look-ahead time increases, the uncertainty of departure time
increases. Therefore, ET D> is more uncertain than ETD;.

F. Scheduling Scheme

To generate a schedule for a traffic scenario with a large time window, the most practical and efficient
approach is to divide it into smaller windows. The relation between planning horizon and actual time is
shown in Fig. 4. A sequential dynamic scheduling scheme is adopted, where the schedule for each window
with time span T, is identified before the time proceeds to that window at t;. If the computational time
of the scheduling algorithm T, is considered, the planning should be started at or before t; — T, to make
sure an updated schedule is available at actual time ¢;. This process will be repeated periodically to provide
schedules for all time windows. An overlapping scheduling scheme is similar except that planning horizons
overlap by a certain duration.
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Figure 4. Scheme with nonoverlapping scheduling windows

G. Algorithms and implementation

The NSGA, a variant of Genetic Algorithms, is applied to solve this multi-objective optimization problem
due to its promising capability of handling multiple objectives and nonlinear optimizations. The stochastic
scheduler combines NSGA and Monte Carlo simulation.!316:17:28 The decision variables including speeds,
routes, delays, and runway assignment are coded as “genes”, and each solution with a set of decision variables
is marked as an “individual”. In NSGA, a population with hundreds of “individuals” evolves at each
generation in terms of their costs through operations of “crossover”, “mutation”, “ranking”, and “selection”.
When evaluating costs for each solution or “individual”, Monte Carlo simulations are used to identify the
statistical measurements. Given a solution with a set of decision variables, its costs are evaluated thousands
of times using the constraint algebra in Monte Carlo simulations. In each simulation, the computed costs
correspond to one uncertainty sample, which was imposed on the “planned” push-back or arrival times.
On top of the optimization core code, scripts that involve the freeze horizon and planning horizon set-ups
are then applied to identify outputs for current planning horizon and inputs for next one. This approach
is implemented using CUDA programming with GPUs to reduce the significant computational time to a
reasonable level. In a Linux platform with 18x2.5 GHz Xeon, 32 GB memory, and two GeForce GTX690
GPUs, a 15-flight scenario scheduling problem takes around 30 seconds to be solved .23 29

IV. Results

A four-hour traffic scenario was built based on historical traffic on Jul. 1, 2014. A total of 315 flights
were included composed of 172 departures and 143 arrivals for LAX. In this scenario, information of each
flight includes aircraft type, planned time at entry points, gate assignment, and flight routes including
arrival/departure meter fixes. Various experiments were then conducted to examine the impacts of difference
factors and to analyze the potential benefits introduced by those factors.

A. Planning horizon

In deterministic cases, or stochastic cases with constant means and constant standard deviations, the delay of
the best solution decreases when the window size/planning horizon increases. Longer planning horizon helps
find solutions closer to global optimum because more information is involved. This may not always be true
when means and standard deviations become time-dependent, or in other words, when uncertainties increase
with the look-ahead time. Since uncertainties grow in long planning horizons due to long look-ahead times,
the increased uncertainties diminish the benefits introduced by expended knowledge because the predicted
information becomes useless or even harmful when the look-ahead time is long.

Figure 5 shows the minimum delays that can be achieved by solutions generated under different planning
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Figure 5. Minimum delays corresponding to various planning windows

horizons. It shows that solutions with smaller planning windows produce less delay when the planning
horizon decreases from 20 minutes to eight minutes. This demonstrates that the impact of time-varied
uncertainties abate the advantage introduced by long planning horizons. The delay cost increases when the
planning window is reduced further. Eventually it returns to a relatively high level at a one-minute planning
window. Because the scheduler cannot foresee flights coming in next planning window, the scheduler can
only make decisions based on knowledge in the current window. When the planning horizon is too short,
the knowledge becomes too limited for the optimizer to generate a good solution.
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Figure 6. Pareto fronts for different planning windows

The optimizer tries to minimize two costs in the model. Figure 6 shows cost pareto fronts produced
by the optimization associated with different planning windows. Each pareto front is composed of a set of
points with each point referring to a schedule solution. The coordinates of a point represent two statistical
costs associated with the solution as mentioned in previous sections: the first cost is the total delay including
airborne and ground delays; And the second cost is the pseudo controller workload (intervention count). The
notion of “W” in the figure denotes planning window. For instance, “W20” denotes solutions generated with
a 20-minute planning window.
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Trends observed in Fig. 6 are similar to Fig. 5. When the planning horizon decreases from 20 minutes to
eight minutes, small windows outperform large windows along the entire pareto front. Trade-offs rise when
the window size decreases from eight minutes to two minutes. Figure 6 shows that with an eight-minute
planning window, the scheduler produces solutions with the minimum delay. The duration of planning hori-
zon that produces minimum delay can be affected by several factors: freeze horizon set-up, taxiing time from
gate to runway, and relation between uncertainties and time.

Here is an example used to compare solutions from eight-minute planning horizon and two-minute planning
horizon: A departure Flight A with type A321 is at Gate 42B and according to its plan, it will leave the
gate at 08:11:00. Flight B is B737 located at Gate 7. Its planned push-back time is 08:13:30. The taziing
distances from Gate 42B to runway 24L, 24R, 25R, and 25L are 1.8 nmi, 1.42 nmi, 1.32 nmi, and 1.44
nmi, respectively. The corresponding distances from Gate 7 to runways are 0.1 nmi, 0.22 nmi, 2.6 nmi, and
2.72 nmi, respectively. Current scheduling time is at 08:10:00.

For a two minute planning horizon, at 08:10:00, the scheduler did not know any information after 08:12:00
including Flight B. Therefore, the scheduler allowed Flight A to leave the runway when it was ready, and
assigned runway 24L to the flight, which takes Flight A 312 seconds to taxi from the gate to runway. Then
Flight A entered the frozen horizon right after pushing back from gate 42B. When the time proceeded to
next planning horizon at 08:12:00, the scheduler finds Flight B, which would be ready in 90 seconds. Its
taxiing time to 24L is 24 seconds. Because Flight A was in frozen horizon already, the only option available
to Flight B was to wait and follow Flight A, which cost Flight B 169 seconds in waiting time. Whereas,
for an eight minute planning horizon, Flight B was within scope when the scheduler was calculating at
08:10:00. Although there was 210 seconds look-ahead time with 86 second standard deviation for Flight B,
the scheduler decided to put Flight B in front of Flight A based on statistical cost measurements, which
would reduce delay about 160 seconds.

Apparently, under current uncertainty assumption, the eight-minute planning horizon is the best candi-
date if a solution with minimum delay is desired. When the requirement is relaxed by allowing a bit high
delay, the scheduler with a two-minute planning horizon can also be used as it can generate solutions with
a bit high delay but much lower intervention count. This implies that, in application, any planning horizon
from two minutes to eight minutes could be a good candidate. One extreme example is the one-minute plan-
ning window, the delay level of the pareto front becomes much greater than other short planning horizons.
The hypothesis is that, although time-dependent uncertainties favor short planning horizon, one minute is
too short for the given freeze horizon and taxiing time. The lack of flight information in the next planning
horizon leads the optimizer to generate solutions with high delay levels.

B. Stochastic vs. deterministic

To examine the difference between deterministic and stochastic schedulers, experiments using a deterministic
scheduler were conducted. To mimic the time-dependent uncertainties in deterministic experiments, time-
dependent errors/noises were imposed to the “planned time” of each flight that is involved in the planning
horizon. The deterministic optimization is then conducted on the basis of these noisy “planned times” to
generate schedules. A variety of planning strategies were tested by varying planning horizons and update
cycles. For example, the black square in Fig. 7 denotes the solution produced by the deterministic scheduler
with a 15-minute planning horizon and one minute update cycle (marked as “W15U1”). This means the
optimizer calculates or updates schedule every minute for the following 15-minute planning horizon. For the
sake of comparison, the pareto front generated under the eight-minute planning window using the stochastic
scheduler (shown in Fig. 6) is presented as a black curve in Fig. 7.

This figure shows clearly that the stochastic scheduler outperforms the deterministic scheduler based
on the statistical measurements of both delays and pseudo intervention counts. This conclusion holds for
deterministic schedulers with all strategies: overlapped or non-overlapped planning windows, and long or
short planning horizons. With the same level of intervention counts, the stochastic scheduler reduces delays
anywhere between 28% and 40% when comparing against the deterministic scheduler. The imperfect knowl-
edge of “planned time” and neglect of uncertainty in optimization appear to be the two main factors that
contribute to the differences. In deterministic optimization, every piece of information is assumed to be per-
fect and the evolution at every step in the optimization is built on that assumption, apparently, inaccurate
“planned times” can not lead the optimizer to the optimal solution. Whereas, in stochastic optimization,
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Figure 7. Comparison between stochastic and deterministic schedulers

the scheduler assumes that “planned time” is imperfect. By following a certain distribution, the scheduler
finds the optimal solution based on statistical measurements.

A typical way to deal with uncertainty in deterministic optimization is to impose extra buffers besides
basic separation requirements, the green circle in Fig. 7 shows the final solution from a deterministic op-
timization using a 15-minute planning horizon and one-minute update cycle with a 15-second buffer. The
15-second buffer does reduce the intervention count a lot, however, it also increases the total delay. This
implies that stochastic scheduling is an effective way to reduce delay and intervention count statistically,
since it takes uncertainty knowledge into account during the optimization.

C. Uncertainty Magnitude
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Figure 8. Impact of Uncertainty Magnitude
To examine the impact of uncertainty magnitude on final schedules, the linear coefficient 0.41 in Eqn. 2
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is reduced to 0.2. Figure 8 presents the results with this lower uncertainty. The labels containing “low”
refer to results with low uncertainties. As expected, with more accurate “planned times” both stochastic
and deterministic schedulers generated solutions with lower delays. Results from deterministic schedulers
improved more than stochastic schedulers, which indicated that deterministic schedulers were more sensitive
to uncertainties. In stochastic cases, the big planning horizon benefit more from the accuracy improvement
than the small planning horizon. This experiment denotes that the advantage of stochastic schedulers over
deterministic schedulers is closely correlated to the uncertainty magnitude.

D. Runway usage

Runway makespan and occupancy metrics were used to examine runway usage. Runway makespan refers to
the time span between first and last flight for a set of operations. When flights are not operated back-to-
back all of the time, the correlation between the makespans and the effectiveness of schedules may not be
tight. However, it is nevertheless a good metric to show the effectiveness of schedules. Figure 9 presents
the statistical runway makespans corresponding to three difference schedulers: a stochastic scheduler with
an eight-minute planning horizon, a deterministic scheduler with a 15-minute planning horizon with one-
minute update cycle, and a deterministic scheduler with a three-minute planning horizon. It shows that
the stochastic scheduler produced minimum makespans for all four runways. Compared to the deterministic
scheduler with a 15-minute window, the stochastic scheduler finished all flight operations six minutes earlier
on runway 24L and 10 minutes earlier on runway 25R.
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245

240

Makespan (minutes)
3
(5]
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Figure 9. Runway Makespans

Runway occupancy can serve as another metric to examine the characteristics of runway usage. It is
defined as the total percentage of the usage of a runway. When computing the metric, it is assumed that
each departure flight uses 40 seconds to takeoff from a runway and each arrival flight takes 50 seconds to
land on a runway. Crossing a runway is assumed to take 10 seconds for a flight. Figure 10 presents the
statistical runway occupancies corresponding to the same three difference schedulers presented in Fig. 9.
Figure 10 shows that all three schedulers utilized 25L/R runways more than 24L/R runways. This could be
caused by the nature of the scenario. Flights were typically assigned to the nearest runway in most situations
and there are more flights close to 25L/R runways in the experimental scenario. Because all flights have to
utilize runway to arrive or to depart, the overall number of operations should be similar with some difference
existing in the number of crossings only. It is noted that outer runways were used a bit more in stochastic
cases, which implies that there were more runway crossings in stochastic cases than in deterministic cases.
The fact that the occupied time of both inner runways in the stochastic case is less than deterministic cases
indicates that more departures were assigned to inner runways in the stochastic case. The overall occupancies
of the three schedulers are similar, however, the stochastic scheduler occupancies are slightly lower, which
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indicates that schedules from stochastic optimization utilize runways slightly more efficiently.
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Figure 10. Runway Occupancy

V. Conclusions

An integrated scheduler that coordinates arrivals, departures, and surface operations provides efficiency
in terminal areas by removing barriers between different operations. This work developed a centralized
stochastic scheduler for operations in a terminal area including airborne and surface operations based on
NSGA and Monte Carlo simulations methods. It extended the formulation of the sequential, stochastic, and
integrated scheduler to arrivals, departures, and surface operations in an entire terminal environment. In
addition to the competing waypoints, this extension included most competing resources in terminal areas
between different flows, such as runway allocations, departure fixes, and runway crossings.

The Los Angeles terminal area was used as an example and experiments were run with a four-hour traffic
scenario in LAX. The scheduler was run sequentially to identify the best robust schedule for the next planning
horizon. In the experiments, the standard deviation values of the departure time uncertainty were time-varied
whereas the departure and arrival uncertainty means and arrival standard deviations were constant. Final
schedules included decisions on routes, speeds or delays, and runway assignments. The algebra constraint
method was used to calculate extra costs to satisfy separation requirements, which were eventually amended
to the overall costs. Studies on planning horizons showed that trade-offs exist between planning horizons and
achievable minimum delays. A 20-minute planning horizon was not a good choice because uncertainties grew
with the look-ahead time. Eight minutes was promising for planning as it achieved the lowest delay compared
to others. However, the results demonstrated that any duration from two minutes to eight minutes could be a
good candidate as well. Experimental results showed that using stochastic schedulers reduced the flight time
delay (airborne and ground) 28% to 40% statistically compared to deterministic schedulers with the same level
of intervention counts. Experiments on uncertainty magnitude demonstrated the close correlation between
uncertainty and the benefit from stochastic schedulers. It was also shown that deterministic schedulers
are more sensitive to uncertainty than stochastic schedulers. The results on runway usage showed that
using the stochastic scheduler, runway makespans and occupancy were usually slightly lower when compared
with deterministic schedulers. Overall, experiments showed that this sequential stochastic scheduler was
capable of scheduling arrivals, departures, and surface operations in an integrated fashion. The stochastic
scheduler successfully took uncertainty into account and statistical results showed significant delay savings
were achieved when the knowledge of uncertainties was involved.
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